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Abstract—Synthetic studies towards the diterpene natural product FCRR toxin have been undertaken. An intermolecular [5+2]
oxidopyrylium-alkene cycloaddition reaction was employed to construct the 7–5–6 tricyclic framework. The reaction proceeded with
very high regio- and stereoselectivity and the bridging ether was reductively cleaved to unmask the carbocycle.
� 2003 Elsevier Ltd. All rights reserved.
FCRR (Fusarium crown and root rot) toxin, a new
phytotoxin from the culture filtrate of Fusarium oxy-
sporum f. sp. radicis-lycopersici (FORL) was isolated in
1994 by Hirota et al. and its biological activities were
studied.1 It was found that the FCRR toxin induces leaf
necrosis for �Momotaro�, a susceptible cultivar of
tomato, and the threshold concentration was 0.25 lg/
mL. The structure of FCRR toxin was established on
the basis of spectroscopic evidence and was assigned as 1
(Fig. 1). In this letter we report the first synthetic study
towards the diterpene natural product 1.

Our preliminary studies focused on the construction of
the fused 7–5–6 tricyclic skeleton with the correct
stereochemistry. We envisioned synthesis of the synthon
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Figure 1. FCRR toxin (1, C20H26O5).
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2 via [5+2] oxidopyrylium-alkene cycloaddition.2–4 The
strategy outlined in Scheme 1 is based on the premise
that the crucial oxidopyrylium-alkene cycloaddition will
result in 2, which would be formed by the endo-addition
of indene 3 across the 3-oxidopyrylium ion and also that
the regiochemical course of the reaction would follow
the path shown as A in Figure 2.5 Finally, the oxa-
bridge should serve as a latent hydroxy substituent and
unmasking of the oxa-bridge of 2 would provide the
required carbocyclic framework.

The first step of our synthesis is the Achmatowicz
reaction, which involves the oxidative rearrangement of
furylcarbinols to hydroxypyranones.6 This rearrange-
ment has been used for the synthesis of a large number
of polyoxygenated natural products.7;8 Furfuryl alcohol
5 on treatment with NBS in THF–H2O (4:1) gave the
hydroxypyranone 6 (Scheme 2).9 Acetylation of 6 at 0 �C
afforded acetoxypyranone 4 in 59% yield in two steps.
The acetoxypyranone 4 when treated with Et3N in the
presence of indene (3, 3 equiv), via the pyrylium ylide
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Figure 3. ORTEP drawing of the X-ray structure of 2.

O
O

H

H

2

O

OH

O

O

HO
65

O

O

AcO
4

a b

c

3
O

O [5+2]

Scheme 2. Reagents and conditions: (a) NBS, THF–H2O (4:1), 0 �C,
0.5 h; (b) Ac2O, pyridine, DMAP, CH2Cl2, 59% (two steps); (c) Et3N,

CH2Cl2, 0 �C–rt.
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generated in situ, smoothly underwent cycloaddition
with indene to furnish the [5+2] cycloadduct 2 in 59–
63% isolated yield as the only observed product.10 The
product was characterized by its 1H NMR data, which
exhibited signals for the enone system with d 6.76 (dd,
J ¼ 9:8, 4.8Hz, 1H), 5.77 (dd, J ¼ 9:8, 1.2Hz, 1H) and
the oxa-bridge protons at d 5.09 (dd, J ¼ 7:3, 4.8Hz,
1H) and 4.73 (dd, J ¼ 8:8, 1.2Hz, 1H). The endo mode
of cycloaddition was inferred from the high coupling
values observed for the oxa-bridge protons. The struc-
ture of 2 was unambiguously established by single
crystal X-ray analysis (Fig. 3).11 We were pleased to find
that the relative regiochemistry of the cycloadduct 2
correlates well with the targeted molecule 1.
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Scheme 3. Reagents and conditions: (a) H2, Pd/C (10%), EtOH, 98%; (b) vi
Having obtained sufficient quantities of 2, in a highly
stereocontrolled fashion, we turned our attention to
functionalize the seven-membered portion of the
cycloadduct. Hydrogenation of 2 over activated Pd/C
(10%) gave the dihydro-product 7 (98% yield, Scheme
3). Grignard reaction of 7 with vinylmagnesium bromide
at )20 �C resulted in the formation of 8 in 86% yield.10

The stereochemistry of 8 was assigned on the basis of
literature analogy, which can be rationalized by the
approach of the Grignard reagent from the least hin-
dered side of the ketone (exo-face) as well as chelation
control by the bridging ether.12

Reduction of 7 with sodium borohydride at 0 �C affor-
ded the alcohol 9. Treatment of 9 with thionyl chloride
and DMF (catalytic) in CH2Cl2 afforded the chloride 10
in good yield. Reductive ring opening of 10 using finely
dispersed sodium in ether, yielded the hydroxy cyclo-
heptanoid 11 in 58% overall yield from 9 (Scheme 4).10;13

In conclusion, the [5+2] cycloaddition of a 3-oxido-
pyrylium with indene provided a facile entry into a 7–5–
6 tricyclic framework. The noteworthy point is that the
cycloaddition proceeded with exceptional regio- and
stereoselectivity. Functionalities can be introduced to
the seven-membered portion in stereoselective fashion,
by virtue of its conformational rigidity. Our efforts
towards functionalization of the aromatic ring and fur-
ther studies with substituted indene derivatives are cur-
rently in progress.
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Scheme 4. Reagents and conditions: (a) NaBH4,MeOH, 0 �C, 1 h, 89%;
(b) SOCl2, DMF (cat.), CH2Cl2, 0 �C–rt, 24 h, 95%; (d) Na, Et2O, 70%.
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